Below you will find a collection of published journal articles by researchers that have made use of DURRIDGE instruments. For more than two decades our products have served scientists working in diverse research fields ranging from deep underground dark matter experiments to the peaks of active volcanoes (and all kinds of places in-between!). Please contact us if you have used DURRIDGE products in your research and would like to submit an article to our collection.

Climate Change

Includes the use of radon measurements in the study of environmental changes related to greenhouse gas emissions.

Wells, N. S., Maher, D., Huang, P., Erler, D. V., Maxwell, P., Hipsey, M. R., & Eyre, B. D. (2020). Land-use intensity alters both the source and fate of CO2 within eight sub-tropical estuaries. Geochimica et Cosmochimica Acta, 268, 107–122., P09025–P09025. [View]

Dabrowski, J. S., Charette, M. A., Mann, P. J., Ludwig, S. M., Natali, S. M., Holmes, R. M., … Henderson, P. B. (2020). Using radon to quantify groundwater discharge and methane fluxes to a shallow, tundra lake on the Yukon-Kuskokwim Delta, Alaska. Biogeochemistry, 148(1), 69–89. [View]

Diggle, R. M., Tait, D. R., Maher, D. T., Huggins, X., & Santos, I. R. (2019). The role of porewater exchange as a driver of CO2 flux to the atmosphere in a temperate estuary (Squamish, Canada). Environmental Earth Sciences, 78(11), 336. [View]

Sadat-Noori, M., Tait, D. R., Maher, D. T., Holloway, C., & Santos, I. R. (2018). Greenhouse gases and submarine groundwater discharge in a Sydney Harbour embayment (Australia). Estuarine, Coastal and Shelf Science, 207, 499–509. [View]

Storlazzi, C. D., Gingerich, S., Swarzenski P, Cheriton, O., Voss, C., Oberle, J. L., … Zhang, C. (2017). The Impact of Sea-Level Rise and Climate Change on Pacific Ocean Atolls That House Department of Defense Installations. [View]

Paytan, A., Lecher, A. L., Dimova, N., Sparrow, K. J., Kodovska, F. G. T., Murray, J., … Kessler, J. D. (2015). Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study. Proceedings of the National Academy of Sciences of the United States of America, 112(17), E2263. [View]

Radon as a Tracer of Groundwater Movement

Including Submarine Groundwater Discharge, limnology, etc.

Bejannin, S., Tamborski, J. J., van Beek, P., Souhaut, M., Stieglitz, T., Radakovitch, O., … Estournel, C. (2020). Nutrient Fluxes Associated With Submarine Groundwater Discharge From Karstic Coastal Aquifers (Côte Bleue, French Mediterranean Coastline). Frontiers in Environmental Science, 7(February), 1–21. [View]

Neupane, R. P., & Kumar, S. (2020). Water 222Rn for evaluating the variation in groundwater inflows to discharge of the Big Sioux River in different flow periods. Sustainable Water Resources Management, 6(1), 1–16. [View]

David, M., Bailly-Comte, V., Munaron, D., Fiandrino, A., & Stieglitz, T. C. (2019). Groundwater discharge to coastal streams – A significant pathway for nitrogen inputs to a hypertrophic Mediterranean coastal lagoon. Science of the Total Environment, 677, 142–155. [View]

Chen, X., Cukrov, N., Santos, I. R., & Rodellas, V. (2019). Karstic submarine groundwater discharge into the Mediterranean : Radon-based nutrient fluxes in an anchialine cave and a basin-wide upscaling. Geochimica et Cosmochimica Acta. [View]

McKenzie, T., Dulai, H., & Chang, J. (2019). Parallels between stream and coastal water quality associated with groundwater discharge. PloS One, 14(10), e0224513. [View]

Lucía, S., Romina, S., Eleonora, C., Esteban, V., & Héctor, P. (2019). Using H, O, Rn isotopes and hydrometric parameters to assess the surface water-groundwater interaction in coastal wetlands associated to the marginal forest of the Río de la Plata. Continental Shelf Research, 186, 104–110. [View]

Sadat-Noori, M., & Glamore, W. (2019). Porewater exchange drives trace metal, dissolved organic carbon and total dissolved nitrogen export from a temperate mangrove wetland. Journal of Environmental Management, 248, 109264. [View]

Wang, Y., Dong, R., Zhou, Y., & Luo, X. (2019). Characteristics of groundwater discharge to river and related heavy metal transportation in a mountain mining area of Dabaoshan, Southern China. Science of the Total Environment, 679, 346–358. [View]

Xiao, K., Li, G., Li, H., Zhang, Y., Wang, X., Hu, W., & Zhang, C. (2019). Combining hydrological investigations and radium isotopes to understand the environmental effect of groundwater discharge to a typical urbanized estuary in China. Science of the Total Environment, 695, 133872. [View]

Montiel, D., Dimova, N., Andreo, B., Prieto, J., García-Orellana, J., & Rodellas, V. (2018). Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions. Journal of Hydrology, 557, 222–242. [View]

Gardner, J. R., Fisher, T. R., Jordan, T. E., & Knee, K. L. (2016). Balancing watershed nitrogen budgets: accounting for biogenic gases in streams. Biogeochemistry , 127(2–3), 231–253. [View]

Sadat-Noori, M., Santos, I. R., Tait, D. R., McMahon, A., Kadel, S., & Maher, D. T. (2016). Intermittently Closed and Open Lakes and/or Lagoons (ICOLLs) as groundwater-dominated coastal systems: Evidence from seasonal radon observations. Journal of Hydrology, 535, 612–624. [View]

Sadat-Noori, M., Santos, I. R., Sanders, C. J., Sanders, L. M., & Maher, D. T. (2015). Groundwater discharge into an estuary using spatially distributed radon time series and radium isotopes. Journal of Hydrology, 528, 703–719. [View]

Chanyotha, S., Kranrod, C., Burnett, W. C., Lane-Smith, D., & Simko, J. (2014). Prospecting for groundwater discharge in the canals of Bangkok via natural radon and thoron. Journal of Hydrology, 519(PB), 1485–1492. [View]

Burnett, W. C., Peterson, R. N., Chanyotha, S., Wattayakorn, G., & Ryan, B. (2013). Using high-resolution in situ radon measurements to determine groundwater discharge at a remote location: Tonle Sap Lake, Cambodia. Journal of Radioanalytical and Nuclear Chemistry, 296(1), 97–103. [View]

Dimova, N. T., Burnett, W. C., Chanton, J. P., & Corbett, J. E. (2013). Application of 222Rn to investigate groundwater discharge into small shallow lakes. Journal of Hydrology, 486, 112–122. [View]

Knee, K. L., & Jordan, T. E. (2013). Spatial Distribution of Dissolved Radon in the Choptank River and Its Tributaries: Implications for Groundwater Discharge and Nitrate Inputs. Estuaries and Coasts, 36, 1237–1252. [View]

Swarzenski, P. W., Dulaiova, H., Dailer, M. L., Glenn, C. R., Smith, C. G., & Storlazzi, C. D. (2013). A Geochemical and Geophysical Assessment of Coastal Groundwater Discharge at Select Sites in Maui and O’ahu, Hawai’i. In C. Wetzelhuetter (Ed.), Groundwater in the Coastal Zones of Asia-Pacific (pp. 27–46). Dordrecht: Springer Netherlands. [View]

Dugan, H. A., Gleeson, T., Lamoureux, S. F., & Novakowski, K. (2012). Tracing groundwater discharge in a High Arctic lake using 222Rn. Environmental Earth Sciences, 66(5), 1385–1392. [View]

Hosono, T., Ono, M., Burnett, W. C., Tokunaga, T., Taniguchi, M., & Akimichi, T. (2012). Spatial distribution of submarine groundwater discharge and associated nutrients within a local coastal area. Environmental Science and Technology, 46(10), 5319–5326. [View]

Null, K. A., Dimova, N. T., Knee, K. L., Esser, B. K., Swarzenski, P. W., Singleton, M. J., … Paytan, A. (2012). Submarine Groundwater Discharge-Derived Nutrient Loads to San Francisco Bay: Implications to Future Ecosystem Changes. Estuaries and Coasts, 35(5), 1299–1315. [View]

Rodellas, V., Garcia-Orellana, J., Garcia-Solsona, E., Masqué, P., Domínguez, J. A., Ballesteros, B. J., … Zarroca, M. (2012). Quantifying groundwater discharge from different sources into a Mediterranean wetland by using 222Rn and Ra isotopes. Journal of Hydrology, 466–467, 11–22. [View]

Blanco, A. C., Watanabe, A., Nadaoka, K., Motooka, S., Herrera, E. C., & Yamamoto, T. (2011). Estimation of nearshore groundwater discharge and its potential effects on a fringing coral reef. Marine Pollution Bulletin, 62(4), 770–785. [View]

De Weys, J., Santos, I. R., & Eyre, B. D. (2011). Linking groundwater discharge to severe estuarine acidification during a flood in a modified wetland. Environmental Science and Technology, 45(8), 3310–3316. [View]

Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Garcés, E., Radakovitch, O., Mayer, A., … Basterretxea, G. (2010). An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry, 97(2), 211–229. [View]

Burnett, W. C., Chanyotha, S., Wattayakorn, G., Taniguchi, M., Umezawa, Y., & Ishitobi, T. (2009). Underground sources of nutrient contamination to surface waters in Bangkok, Thailand. Science of the Total Environment, 407(9), 3198–3207. [View]

Santos, I. R., Niencheski, F., Burnett, W., Peterson, R., Chanton, J., Andrade, C. F. F., … Knoeller, K. (2008). Tracing anthropogenically driven groundwater discharge into a coastal lagoon from southern Brazil. Journal of Hydrology, 353(3–4), 275–293. [View]

Tse, K. C., & Jiao, J. J. (2008). Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by 222Rn. Marine Chemistry, 111(3–4), 160–170. [View]

Kluge, T., Ilmberger, J., von Rohden, C., & Aeschbach-Hertig, W. (2007). Tracing and quantifying groundwater inflow into lakes using 222Rn. Hydrology and Earth System Sciences Discussions, 4(3), 1519–1548. [View]

Human Health Risk

Includes direct monitoring monitoring of radon in both air and water in residential, occupational hygiene, and health physics contexts, emanation from building materials, etc.

Alaboodi, A. S., Kadhim, N. A., Abojassim, A. A., & Baqir Hassan, A. (2020). Radiological hazards due to natural radioactivity and radon concentrations in water samples at Al-Hurrah city, Iraq. International Journal of Radiation Research, 18(1), 1–11. [View]

Duggal, V., Sharma, S., & Mehra, R. (2020). Risk assessment of radon in drinking water in Khetri Copper Belt of Rajasthan, India. Chemosphere, 239, 124782. [View]

Gulan, L., Penjišević, I., Stajic, J. M., Milenkovic, B., Zeremski, T., Stevanović, V., & Valjarević, A. (2020). Spa environments in central Serbia: Geothermal potential, radioactivity, heavy metals and PAHs. Chemosphere, 242, 124782. [View]

Ahmad, N., Nasir, T., Rizwan, S., Ullah, H., & Bakhsh, M. (2019). Evaluation of 222Rn and 226Ra concentrations in cement and limestone of Sheikh Buddin Hill, Pezu, Pakistan using different techniques. International Journal of Environmental Analytical Chemistry, 99(7), 683–691. [View]

Ahmed, F. H., Mhana, W. J., Hassan, S. F., & Mansour, H. L. (2019). Indoor Radon Concentrations Measurements for Selected Dwellings in Some Baghdad Districts – Iraq. Al-Mustansiriyah Journal of Science, 30(3), 53–56. [View]

Cho, H. M., Lee, J., Wi, S., & Kim, S. (2019). Field study on indoor air quality of wood remodeled welfare facilities for physical and psychological benefits. Journal of Cleaner Production, 233, 197–208. [View]

Fuhrmann, M., Michaud, A., Salay, M., Benson, C. H., Likos, W. J., Stefani, N., … Williams, M. M. (2019). 210Pb profiles in radon barriers, Indicators of long-term 222Rn transport. Applied Geochemistry, 110(June), 104434. [View]

Kareem, I. M., Abdulkareem, L. A., & Al-Barudi, H. I. (2019). Surface and Deep Soil 222Rn Gas Exhalation Comparison A Case Study in Tawke, Duhok, Northern Iraq. Technology & Applied Science Research, 9(5), 4741–4744. [View]

Kuzmanović, P., Todorović, N., Forkapić, S., Petrović, L. F., Knežević, J., Nikolov, J., & Miljević, B. (2019). Radiological characterization of phosphogypsum produced in Serbia. Radiation Physics and Chemistry, 108463. [View]

Najam, L. A., El-Taher, A., Abojassim, A., & Mraity, H. (2019). Assessment of Annual effective Dose for Different Age Groups Due to Radon Concentrations in Groundwater Samples at Qassim, Saudi Arabia. Iranian Journal of Medical Physics, 0(0). [View]

Oni, O. M., Amoo, P. A., & Aremu, A. A. (2019). Simulation of absorbed dose to human organs and tissues associated with radon in groundwater use in Southwestern Nigeria. Radiation Physics and Chemistry, 155 (July 2017), 44–47. 53–56. [View]

Silva, C. R. e., Machado, D. V., & da Silva-Filho, E. V. (2019). Determination of the natural radioactivity in the mineral water distributed in the Salutaris Park, Paraíba do Sul, Brazil. Environmental Earth Sciences, 78(22), 1–9. [View]

Vučković, B., Todorović, N., Nikolov, J., Radovanović, D., & Kevkić, T. (2019). Assessment of radiation risk from drinking water at public fountains on the wider territory of Kruševac. The University Thought – Publication in Natural Sciences, 9(1), 72–76. [View]

Ye, Y., Wang, Z., Liang, T., Ding, D., Feng, S., & Zhong, Y. (2019). Experimental study on radon exhalation behavior of heap leaching uranium ore column with dilute sulfuric acid. Environmental Science and Pollution Research. [View]

Yousef, A. M. M., & Zimami, K. (2019). Indoor radon levels, influencing factors and annual effective doses in dwellings of Al-Kharj City, Saudi Arabia. Journal of Radiation Research and Applied Sciences, 12(1), 460–467. [View]

Długosz-Lisiecka, M., Krystek, M., Raczyński, P., Głuszek, E., Kietlińska-Michalik, B., & Niechwedowicz, M. (2017). Indoor 222Rn concentration in the exhibition and storage rooms of Polish geological museums. Applied Radiation and Isotopes, 121(December 2016), 12–15. [View]

Salih, N. F., Jafri, Z. M., & Aswood, M. S. (2016). Measurement of radon concentration in blood and urine samples collected from female cancer patients using RAD7. Journal of Radiation Research and Applied Sciences, 9(3), 332–336. [View]

Duggal, V., Mehra, R., & Rani, A. (2013). Determination of 222Rn level in groundwater using a RAD7 detector in the bathinda district of Punjab, India. Radiation Protection Dosimetry, 156(2), 239–245. [View]

Rani, A., Mehra, R., & Duggal, V. (2013). Radon monitoring in groundwater samples from some areas of northern Rajasthan, India, using a RAD7 detector. Radiation Protection Dosimetry, 153(4), 496–501. [View]

Gillmore, G. K., Crockett, R., Denman, T., Flowers, A., & Harris, R. (2012). Radium dial watches, a potentially hazardous legacy? Environment International. Radiation Measurements, 45(1), 91–98. [View]

Nikolov, J., Todorovic, N., Pantic, T. P., Forkapic, S., Mrdja, D., Bikit, I., … Veskovic, M. (2012). Exposure to radon in the radon spa Niška Banja, Serbia. Radiation Measurements, 47(6), 443–450. [View]

Environmental Contamination

Includes NAPL mapping, radon as a surrogate for chlorinated vapour intrusion into buildings, Attenuation Factor measurements, etc.

Almubarak, H. A. (2020). Environmental impact assessment of inland purificatio and desalination plants: case study of Al Asyah plant, Qassim region, Central Saudi Arabia. Arabian Journal of Geosciences, 13(5), 229. [View]

Knee, K. L., & Masker, A. E. (2019). Association between unconventional oil and gas (UOG) development and water quality in small streams overlying the Marcellus Shale. Freshwater Science, 38(1), 113–130. [View]

Castelluccio, M., Agrahari, S., De Simone, G., Pompilj, F., Lucchetti, C., Sengupta, D., … Tuccimei, P. (2018). Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India. Environmental Science and Pollution Research, 25(13), 12515–12527. [View]

De Simone, G., Lucchetti, C., Pompilj, F., Galli, G., Tuccimei, P., Curatolo, P., & Giorgi, R. (2017). Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition? Journal of Environmental Radioactivity, 171, 138–147. [View]

Johnson, P., Holton, C., Guo, Y., Dahlen, P. Luo, H. Gorder, K. Dettenmaier, E., & Hinchee, R. (2016). Integrated Field-Scale, Lab-Scale, and Modeling Studies for Improving Our Ability to Assess the Groundwater to Indoor Air Pathway at Chlorinated Solvent-Impacted Groundwater Sites Strategic Environmental Research and Development Program (SERDP). [View] (20 MB)

De Simone, G., Galli, G., Lucchetti, C., & Tuccimei, P. (2015). Using Natural Radon as a Tracer of Gasoline Contamination. Procedia Earth and Planetary Science, 13, 104–107. [View]

Ponsin, V., Chablais, A., Dumont, J., Radakovitch, O., Höhener, P. (2015) 222Rn as Natural Tracer for LNAPL Recovery in a Crude Oil‐Contaminated Aquifer. Groundwater Monitoring & Remediation. [View]

Schubert, M. (2015). Using radon as environmental tracer for the assessment of subsurface Non-Aqueous Phase Liquid (NAPL) contamination – A review The European Physical Journal Special Topics, 224(4):717-730. [View]

Yang, J. H., Jun, S. C., Kwon, H. P., & Lee, K. K. (2014). Tracing of residual multiple DNAPL sources in the subsurface using 222Rn as a natural tracer at an industrial complex in Wonju, Korea. Environmental Earth Sciences, 71(1), 407–417. [View]

Rosenberg, Y. O., Metz, V., & Ganor, J. (2013). Radium removal in a large scale evaporitic system. Geochimica et Cosmochimica Acta, 103, 121–137. [View]

McHugh, T. E., Beckley, L., Bailey, D., Gorder, K., Dettenmaier, E., Rivera-Duarte, I., … MacGregor, I. C. (2012). Evaluation of Vapor Intrusion Using Controlled Building Pressure. Environmental Science & Technology, 46(9), 4792–4799. [View]

Schubert, M., Schmidt, A., Müller, K., Weiss, H. (2011) Using 222Rn as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging. Journal of Environmental Radioactivity. [View]

Radon Metrology and Measurement Techniques

RAD7 as radon reference standard instrument, inter-comparisons between instruments, radon-in-water measurement techniques, soil radon measurement techniques, etc.

Lane-Smith, D.; Schubert, M. (2020). Absolute Measurement of Thoron in Surface Waters. Water, 12, 3083. [View]

Durejka, S., Gilfedder, B. S., & Frei, S. (2019). A method for long-term high resolution 222Radon measurements using a new hydrophobic capillary membrane system. Journal of Environmental Radioactivity, 208–209 (February),105980. [View]

Vyletělová, P., & Froňka, A. (2019). Continuous Radon-in-Water Monitoring—Comparison of Methods Under Laboratory Conditions and Results of in Situ Measurements. Radiation Protection Dosimetry, 1–7. [View]

Forkapić, S., Lakatoš, R., Čeliković, I., Bikit-Schroeder, K., Mrdja, D., Radolić, V., & Samardžić, S. (2019). Proposal and optimization of method for direct determination of the thoron progeny concentrations and thoron equilibrium. Radiation Physics and Chemistry, 159, 57–63. [View]

Jobbágy, V., Stroh, H., Marissens, G., Gruber, V., Roth, D., Willnauer, S., … Hult, M. (2019). Evaluation of a radon-in-water pilot-proficiency test. Applied Radiation and Isotopes, 153, 108836. [View]

Knee, K. L., & Masker, A. E. (2019). Association between unconventional oil and gas (UOG) development and water quality in small streams overlying the Marcellus Shale. Freshwater Science, 38(1), 113–130. [View]

Taniguchi, M., Dulai, H., Burnett, K. M., Santos, I. R., Sugimoto, R., Stieglitz, T., … Burnett, W. C. (2019). Submarine Groundwater Discharge: Updates on Its Measurement Techniques, Geophysical Drivers, Magnitudes, and Effects. Frontiers in Environmental Science, 7(October), 1–26. [View]

Seo, J., Nirwono, M. M., Park, S. J., & Lee, S. H. (2018). Standard Measurement Procedure for Soil Radon Exhalation Rate and Its Uncertainty. Journal of Radiation Protection and Research, 43(1), 29–38. [View]

Zhao, S., Xu, B., Zhang, X., & Burnett, W. C. (2018). Rapid 224Ra measurements in water via multiple radon detectors. Journal of Radioanalytical and Nuclear Chemistry. [View]

Dulai, H., Kamenik, J., Waters, C. A., Kennedy, J., Babinec, J., Jolly, J., & Williamson, M. (2016). Autonomous long-term gamma-spectrometric monitoring of submarine groundwater discharge trends in Hawaii. Journal of Radioanalytical and Nuclear Chemistry, 307(3), 1865–1870. [View]

Gardner, J. R., Fisher, T. R., Jordan, T. E., & Knee, K. L. (2016). Balancing watershed nitrogen budgets: accounting for biogenic gases in streams. Biogeochemistry, 127(2–3), 231–253. [View]

Lucchetti, C., De Simone, G., Galli, G., & Tuccimei, P. (2016). Evaluating radon loss from water during storage in standard PET, bio-based PET, and PLA bottles. Radiation Measurements, 84, 1–8. [View]

Tuccimei, P., Lane-Smith, D., Galli, G., Lucchetti, C., De Simone, G., Simko, J., … Bond, C. E. (2016). Our PET project: an unlimited supply of big and small water sample vials for the assay of radon in water. Journal of Radioanalytical and Nuclear Chemistry, 307(3), 2277–2280. [View]

Schubert, M., & Paschke, A. (2015). Radon, CO2 and CH4 as environmental tracers in groundwater/surface water interaction studies − comparative theoretical evaluation of the gas specific water/air phase transfer kinetics. European Physical Journal: Special Topics, 224(4), 709–715. [View]

Nelson, A. W., May, D., Knight, A. W., Eitrheim, E. S., Mehrhoff, M., Shannon, R., … Schultz, M. K. (2014). Matrix Complications in the Determination of Radium Levels in Hydraulic Fracturing Flowback Water from Marcellus Shale. Environmental Science and Technology Letters, 1(3), 204–208. [View]

Lane-Smith, D., & Sims, K. W. W. (2013). The effect of CO2 on the measurement of 220Rn and 222Rn with instruments utilising electrostatic precipitation. Acta Geophysica, 61(4), 822–830. [View]

Lee, K. Y., & Burnett, W. C. (2013). Determination of air-loop volume and radon partition coefficient for measuring radon in water sample. Journal of Radioanalytical and Nuclear Chemistry, 298(2), 1359–1365. [View]

Santos, I. R., Maher, D. T., & Eyre, B. D. (2012). Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science and Technology, 46(14), 7685–7691. [View]

Schubert, M., Paschke, A., Lieberman, E., & Burnett, W. C. (2012). Air–Water Partitioning of 222Rn and its Dependence on Water Temperature and Salinity. Environmental Science & Technology Chemosphere, 46(7), 3905–3911. [View]

Hofmann, H., Gilfedder, B. S., & Cartwright, I. (2011). A novel method using a silicone diffusion membrane for continuous 222Rn measurements for the quantification of groundwater discharge to streams and rivers. Environmental Science and Technology, 45(20), 8915–8921. [View]

Dimova, N., Burnett, W. C., & Lane-Smith, D. (2009). Improved Automated Analysis of Radon (222Rn) and Thoron (220Rn) in Natural Waters. Environmental Science & Technology, 43(22), 8599–8603. [View]

Dimova, N., Burnett, W. C., Horwitz, E. P., & Lane-Smith, D. (2007). Automated measurement of 224Ra and 226Ra in water. Applied Radiation and Isotopes, 65(4), 428–434. [View]

Dulaiova, H., Peterson, R., Burnett, W. C., & Lane-Smith, D. (2005). A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. Journal of Radioanalytical and Nuclear Chemistry, 263, 361–363. [View]

Nour, S., El-Sharkawy, A., Burnett, W. C., & Horwitz, E. P. (2004). Radium-228 determination of natural waters via concentration on manganese dioxide and separation using Diphonix ion exchange resin. Applied Radiation and Isotopes, 61(6), 1173–1178. [View]

Lane-Smith, D. R., Burnett, W. C., & Dulaiova, H. (2002). Continuous 222Rn measurements in the coastal zone. Sea Technology, 43(10), 37–45. [View]

Kim, G., Burnett, W. C., Dulaiova, H., Swarzenski, P. W., & Moore, W. S. (2001). Measurement of 224Ra and 226Ra Activities in Natural Waters Using a Radon-in-Air Monitor. Environmental Science & Technology, 35(23), 4680–4683. [View]

Volcanoes and Seismic Activity

Including radon as an earthquake precursor.

Zhou, X., Chen, Z., & Cui, Y. (2016). Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan Ms8.0 earthquake in western Sichuan, China. Environmental Geochemistry and Health, 38(5), 1067–1082. [View]

Hwa Oh, Y., & Kim, G. (2015). A radon-thoron isotope pair as a reliable earthquake precursor. Scientific Reports, 5(1), 13084. [View]

Pakpahan, S., Nurdiyanto, B., & Ngadmanto, D. (2014). Earthquake Precursors Analysis Using Geo-Atmospheric and Geochemical Parameters in Geophysical Observatory Station Pelabuhan Ratu, Sukabumi. Jurnal Meteorologi Dan Geofisika, 15(2), 77–86. [View]

Kumar, A., Walia, V., Singh, S., Bajwa, B. S., Mahajan, S., Dhar, S., & Yang, T. F. (2012). Earthquake precursory studies at Amritsar Punjab, India using radon measurement techniques. International Journal of Physical Sciences, 7(42), 5669–5677. [View]

Singh, S., Kumar, A., Singh Bajwa, B., Mahajan, S., Kumar, V., & Dhar, S. (2010). Radon monitoring in soil gas and ground water for earthquake prediction studies in north west Himalayas, India. Terrestrial, Atmospheric and Oceanic Sciences, 21(4), 685–695. [View]

Zhou, X., Du, J., Chen, Z., Cheng, J., Tang, Y., Yang, L., … Li, Y. (2010). Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China. Geochemical Transactions, 11, 1–10. [View]

Particle Physics

Includes radon as a background in deep underground dark matter, neutrino-less double-beta decay and other rare-event physics experiments.

Ezeribe, A. C., Lynch, W., Gregorio, R. R. M., Mckeand, J., Scarff, A., & Spooner, N. J. C. (2017). Demonstration of radon removal from SF6 using molecular sieves. Journal of Instrumentation, 12(09), P09025–P09025. [View]

Battat, J. B. R., Brack, J., Daw, E., Dorofeev, A., Ezeribe, A. C., Fox, J. R., … Yuriev, L. (2014). Radon in the DRIFT-II directional dark matter TPC: emanation, detection and mitigation. Journal of Instrumentation, 9, 11004. [View]

Jillings, C. (2013). Control of contamination of radon-daughters in the DEAP-3600 acrylic vessel. AIP Conference Proceedings, 1549 (August), 86–89. [View]

Aprile, E., Alfonsi, M., Arisaka, K., Arneodo, F., Balan, C., Baudis, L., … Weinheimer, C. (2012). The distributed Slow Control System of the XENON100 experiment. Journal of Instrumentation, 7(12). [View]

Guiseppe, V. E., Elliott, S. R., Hime, A., Rielage, K., & Westerdale, S. (2011). A radon progeny deposition model. IP Conference Proceedings, 1338 (April 2011), 95–100. [View]

Bauer, D. A. (2005). Background reduction in cryogenic detectors. In AIP Conference Proceedings, (Vol. 785, pp. 65–74). [View]