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RAD7 Overview

• Continuous radon monitor.

• Electrostatic Precipitation of radon 
decay products followed by High-
Resolution Alpha Spectrometry.

• Simultaneous, independent 
measurements of 222Rn (‘radon’) and 
220Rn (‘thoron’).

• Nominal sensitivity (Normal Mode): 
0.013 cpm/Bq/m3 (0.5 cpm/pCi/L).

• Vanishingly small intrinsic background: 
0.2 Bq/m3 for the lifetime of the 
instrument (no 210Po interference).

• Measurement range: 4 – 750,000 
Bq/m3.

• Over 3,800 scientific papers published 
using RAD7.
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Very good energy 

resolution ensures:

1) Near-perfect 

background rejection 

(inc. long-lived 

background from 210Po 

– orange peak)

Radon Decay Chain & RAD7

2) Simultaneous, independent 

measurements of radon (red 

peaks) and thoron (green 

peaks).



RAD H2O – Overview

• Lee & Kim (2006).

• Radon in discrete water samples (40 or 250 

ml).

• Built-in RAD7 Protocols: WAT-40 & WAT-

250 (40 ml and 250 ml sample vials).

• LLD of ~ 370 Bq/m3 radon-in-water with built-

in 30-minute test protocol.

5

• Important to note sample collection time, 

for radon decay correction.

• Temperature dependence of the water-air radon 

partition coefficient can be safely ignored due to 

small size of samples.



RAD H2O – McKenzie, Dulai, Chang 2019

• Used here in Hawai'i to provide 

input to a radon mass-balance 

model, in order to calculate 

coastal SGD and 

riverine baseflow fluxes.

• See Henrietta Dulai's 

presentation on Thursday: 

"Temporal variability and trends 

of coastal radon mass balance 

components".
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• Q_in, Q_out: water flux (m3 / day) at box in / out boundary.

• Rn_out, Rn_in: radon-in-water concentration (Bq/m3) at in / 

out box boundary.

• Rn_GW: radon concentration in the groundwater.

• E: evasion (Bq m2 / day)

• dQ/dx: change in stream discharge per box.

• W_box, L_Box: width and length of box (m)



Big Bottle System – Overview

• LLD ~ 37 Bq/m3 (x 10 lower than RAD H2O).

• Glass and Soda Bottle versions.

• Temperature dependence of water-air 

partition coefficient necessitates measuring 
temperature with the supplied probe.

• Weigel (1978) - empirical formula for the 
partitioning of radon between water and air 
as a function of T (basis of air-water 

conversion in CAPTURE software). Later 
extended to a 2D correction (T and salinity) 

by Schubert et al. (2012) - added to 
CAPTURE after a feature request at the last 
RaRn conference in Delmenhorst.
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• Larger water-to-air volume 

ratio => larger signal => 

lower LLD.

• Higher T at measurement time 
=> lower k in Weigel equation 
=> larger signal. K is roughly 
0.25 at room temperature.



Big Bottle System – Examples

• Used here with 1.5 L soda bottles to 

measure very low levels (~ 100 Bq/m3) of 

radon in an Arctic Lake near Abisko, 

Sweden.

• Investigation of silicon dynamics - dissolved 

silica (DSi) from GW discharge.

• Samples taken from ~ 0.5 - 1.5 m depth. 

Water pumped into bottle, and allowed to 

overflow, before capping with no 

headspace.
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• Used here with 6 L HDPE bottles to measure very low 

levels (~ 100 Bq/m3) of radon in Sydney Harbour.

• Investigation of SGD as a driver of dissolved greenhouse 

gas concentrations (CO2, CH4, N2O).

• > 2hr counting time.

Zahajska et al. 2021

Sadat-Noori et al. 2018



RAD AQUA – Continuous Radon-in-Water

• Radon and Thoron Measurement: 
Continuous monitoring in water.

• Foundational papers: Burnett, Kim 
& Lane-Smith (2001) & Dulaiova et 
al. (2001).

• 95% response to radon in 30 
minutes (thoron much faster –
strongly dependent on air flow 
rate).

• Same low radon LLD as BB system 
(~ 37 Bq/m3).

• Clean and Safe: Involves no 
hazardous materials or chemicals.

• Deploy on a boat and combine with 
GPS for spatial mapping. Or, deploy 
at a fixed location to track temporal 
changes.

• Larger total water sample volume 
=> smooth out heterogeneities.
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RAD Aqua – Chanyotha et al. (2014)

• Boat-based RAD7 + RAD Aqua setup 
used to prospect for groundwater flows 
into Klongs near Bangkok, Thailand.

• Use thoron: short half life = superior 
temporal (and hence spatial) resolution.

• Maximise water and air flow rates to 
minimise thoron decay en route to 
RAD7.

• Water flow rate in this work was 6 LPM.

• Max airflow rate for RAD7 ~ 2.5 LPM 
[Chanyotha et al. 2018].

• Defined Meaningful Thoron Threshold 
(MTT) - now implemented in CAPTURE 
(grey shaded area on graph).
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• See Bill Burnett's keynote 

presentation for details.



Water Probe - Passive Radon-in-Water

• Slow response (2+ hours) passive radon-in-water 

monitoring.

• Same high sensitivity as the RAD AQUA.

• Like other water accessories, Water Probe 

exchanges radon from water to air phase.

11

• Temperature-dependent partition 

coefficient means water 

temperature must be measured.

• Can also be used with the Active 

DRYSTIK for long-

term, maintenance-free operation



Water Probe – Zhang et al. 2016

• Water Probe used to assess SGD into Laizhou Bay, China.

• Measured radon-in-water concentration used as input to mass balance model. Output: 

SGD flux.
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A Few Other RAD7 Methods
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1. Measure radon flux from sediments using a RAD7 and 
variation of RAD H2O with e.g. 500 ml sample flask in 
an open-loop setup [Chanyotha 2014, 2016].

2. Measure dissolved radium-226 & radium-224 (albeit 
with ~ high LLD) with RAD H2O, fitting the radioactive 
ingrowth [Kappke et al. 2013].

3. Measure low levels of dissolved radium-226 & radium-
224 by flowing large samples of water through a 
cartridge containing MnO2-impregnated acrylic fibre
('preconcentration'), then measuring radon and thoron 
ingrowth in a closed air loop using RAD7 [Kim et al. 
2001].
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