DRYSTIK

Models ADS-3 and ADS-3R

Active Moisture Exchanger Accessory for the RAD7 User Manual

TABLE OF CONTENTS

INTRODU	JCTION	4
1 GETTIN	NG STARTED	5
1.1 Ung	backing	5
1.2 Gen	neral Safety Instructions	5
1 3 DRY	/STIK Packing List	5
	Figure 1 Tubing included with DRYSTIK	5
2 USING	THE DRYSTIK	6
2.1 Con	inections and Controls	6
2.1.	1 Front Panel	6
	Figure 2 DRYSTIK ADS-3 Front Panel	6
	Figure 3 DRYSTIK ADS-3R Front Panel	7
	Figure 4 Tubing Outlet Layouts for DRYSTIK ADS-3 (top) and ADS-3R (bottom)	8
2.1.2	2 Rear Panel (Model ADS-3)	8
2.4.7	Figure 5 DRYSTIK ADS-3 Rear Panel	8
2.1.:	3 The DRYSTIK User Interface	9
	Figure 6 The DRYSTIK menu is navigated using the [1], [4], and [Enter] buttons	9
2.1	Figure / The DRYSTIK duty cycle configuration screen. Values are adjusted using [1] and [4].	10
2.1.4	4 DRYSTIK Profiles	10
2.1.	5 Built-In Profiles Table	11
2.1.0	o Solenola 7 CARTI IRE Software	11
2.1.		11
2.2 Mor	nitoring Radon in Air	12
22.14-		12
2.3 Mor	nitoring I noron in Air Figure 9. Basic setup for monitoring thoron in air	13
	Figure 10 Alternative setup for monitoring thoron in air	14
2.4 Hia	h Humidity Conditions	15
2.1 119	Figure 11 DRYSTIK Configuration with Cool Trap	15
2.5 Mor	nitoring Radon in Water	16
2.5.	1 RAD AQUA	16
	Figure 12 DRYSTIK Configuration with RAD AQUA	16
2.5.2	2 RAD H2O	17
2.5.2	2a System Setup	17
2.5.2	2b Needle Valve Adjustment	17
2.5.2	2c RAD7 Setup	17
Figu	are 13 DRYSTIK Configuration with RAD H2O	17
2.5.2	2d DRYSTIK Setup	17
2.5.2	2e Measurement	18

2.5.2f Preparing for the next measurement	18
2.5.2g Data analysis	18
2.6 Soil Gas Monitoring	19
Figure 14 DRYSTIK Configuration for monitoring radon in soil gas	19
2.6.1 Monitoring Radon in Soil Gas	19
2.6.2 Minimum Flow Rates	20
Figures 15-17 Underground Soil Gas Sphere	20
2.6.3 Correcting for Very Low Flow Rates	21
2.6.4 Measuring Thoron in Soil Gas	21
3 DRYSTIK Technology	22
3.1 Pump Airflow	22
Figure 18 DRYSTIK Pump Airflow	22
3.2 Nafion Tubing Airflow	22
Figure 19 DRYSTIK Pump Airflow	22
3.3 DRYSTIK Circuitry	23
Figure 20 DRYSTIK Model ADS-3 Circuitry	23
4 Troubleshooting	24
4.1 Water Enters The DRYSTIK	24
4.2 Dust Enters The DRYSTIK	24
4.3 CAPTURE Software Fails to Detect The DRYSTIK	24
Appendix 1: DRYSTIK Model Comparison	25
Appendix 2: Glossary of Terms	26

INTRODUCTION

The Durridge DRYSTIK consists of a Nafion membrane tube with a purge sheath coiled in a box with a pump, flow-control needle valves, and a Duty Cycle Controller.

Nafion, a material invented by DuPont and marketed by Perma Pure, consists of PTFE (Teflon) laced with hydrophilic molecules that will pass water molecules from one to another down a humidity gradient in the material. If the humidity inside the membrane tube is higher than the humidity in the purge sheath then water molecules will be transported from inside the tube to the purge sheath. This is purely a chemical process. There are no micro-pores and other gases cannot cross the membrane.

In the DRYSTIK, the air inside the membrane tube is compressed, thus increasing the humidity and making the system much more efficient. The desiccant in a Laboratory Drying Unit can be made to last for many months of continuous use, without replacement, instead of 10 days in typical conditions without a DRYSTIK.

Compressing the incoming air causes water molecules to cross to the purge sheath even if the sheath is filled with fresh air at ambient humidity. Thus the system will start to dry incoming ambient air even without dry purging air in the sheath. If the dryer outlet air is circulated back to become purge air it will increase the efficiency of the drying process and the system becomes regenerative, bringing the air leaving the membrane tube to progressively lower humidity.

A Duty Cycle Controller is built into the device to provide precise control of very low average sample flow rates. This is important for several applications including long-term soil gas monitoring.

Ideally, the Nafion tube should be purged with dry air flowing at two or three times the sample flow velocity. However, with the incoming air compressed, the device is still effective even though only the dried sample air is used to purge the system. The relative humidity can often be brought down below 10% even with no desiccant in the air path, but it is more efficient if desiccant is still used.

Nafion is an amazing material. It loves water vapor. But its function is inhibited by the presence of liquid water. Compression of ambient air in high-humidity conditions can produce condensation in the membrane tubing, that reduces the efficiency of the system. In those conditions, a cool trap between the pump and the membrane tube is recommended, and offered as an accessory. Reducing the duty cycle to around 20% also helps to mitigate the effect of condensation.

DRYSTIK ADS-3

DRYSTIK ADS-3R

1 GETTING STARTED

1.1 Unpacking

First make sure your DRYSTIK package contains everything you are supposed to have. Examine the case contents and verify that you have all the items shown in the packing list. If anything is missing, please call DURRIDGE immediately at (+1) 978-667-9556 or email sales@durridge.com.

1.3 DRYSTIK Packing List

The DRYSTIK system consists of the following components:

- The main DRYSTIK console with built-in Duty Cycle Controller
- Tubing Set consisting of the following sections (See Figure 1; tubing usage shown in Figure 8)
 - A (x2): 36" long 1/8" ID
 - B (x1): 24" long 1/8" ID
 - C (x1): 3" long 5/15" ID to 36" long 3/16" ID to 3" long 1/8" ID
 - D (x1): 3" long 5/15" ID to 36" long 3/16" ID to 3" long 1/8" ID + Filter
- 12V 1.5 Amp DC Power Adapter with Cable
- 12V DC Out Cable for powering optional Solenoid and Water Switch accessories
- USB Cable
- Printed DRYSTIK User's Manual

Figure 1 Tubing included with DRYSTIK

1.2 General Safety Instructions

There is nothing hazardous to the user in the DRYSTIK package. To protect the DRYSTIK unit, do not let it come in direct contact with water. It is also important to prevent air samples containing liquid water from entering the unit's Sample In port. This is covered in the usage instructions later in this manual.

2 USING THE DRYSTIK

2.1 Connections and Controls

2.1.1 Front Panel

The DRYSTIK contains hose connections for the pump input and output, plus three air outputs (labeled Low Airflow, High Airflow, and Adjustable Airflow), and In and Out ports for the purge airflow coming out of the RAD7.

The Low Airflow output produces a nominal airflow rate of 0.16 L/Min, while the High Airflow output produces a nominal airflow rate of 1.5 L/min, and the Adjustable Airflow output can produce a modifiable airflow rate of up to approximately 2 L/min. Note that these values may vary if a constraint is put in the sample path, or if more than one air outlet is used simultaneously, or if the pump performance has degraded. The DRYSTIK uses plugged tubing connectors, which pop in and out of the connection outlets.

Each outlet remains open except for the Low Airflow, High Airflow, and Needle Valve ports, which are shut off except when a tubing plug is inserted. It is necessary to insert a plug whenever airflow is required.

The duty cycle controls consist of three buttons and an LCD display. Their function is context sensitive, based on the state of the unit as indicated on the display. A membrane button interface allows for the configuration of duty cycle profiles.

Figure 2 DRYSTIK ADS-3 Front Panel

Caution:

The Low Airflow, High Airflow, and Needle Valve outlets on the DRYSTIK are shut off except when a tubing plug is inserted into one of them. It is important to insert a plug into one of these outlets whenever airflow is required.

Figure 3 DRYSTIK ADS-3R Front Panel

Caution:

The Low Airflow, High Airflow, and Needle Valve outlets on the DRYSTIK are shut off except when a tubing plug is inserted into one of them. It is important to insert a plug into one of these outlets whenever airflow is required.

The DRYSTIK ADS-3 and ADS-3R use different layouts for the tubing ports, and slightly different labels are used as well. The tubing port layouts of the two devices are shown here.

2.1.2 Rear Panel (Model ADS-3)

The non-ruggedized DRYSTIK ADS-3 is housed in a case containing front and rear panels. The rear panel of the DRYSTIK ADS-3 contains a series of switches and ports, as shown in Figure 5 on the next page. These are, from left to right, the Internal Pump / DCC Output toggle switch, the 12V Power Out port, the 12VDC Power In port, the device Power ON/OFF switch, and the USB port.

The Internal Pump / DCC Output toggle switch is used to specify whether the DRYSTIK's Duty Cycle

Controller is used to cycle the internal pump, or an external device whose power is supplied by the DCC output port. The benefits of the duty cycle controller are thus available for a wide variety of other devices.

The DRYSTIK'S USB port may be used to connect the device to a computer running Durridge'S CAPTURE software. CAPTURE can be used to activate the DRYSTIK, monitor the device's state, and configure its duty cycle profiles. This is discussed further in Section 2.1.7.

Internal Pump	DCC Output	2V OUT 1.0A ← +	12VDC IN 1.25A 	Power ON Power OFF
DRYSTIK	[®] with Duty Cycle Con	troller		
Model No: 4.	BADS-3	Serial No: 238		
DURRIDGE Com	pany, Inc. 524 Boston Ro	ad, Billerica, MA 01821, I	JSA. http://www.durridge.com	
				UGB

Figure 5 DRYSTIK ADS-3 Rear Panel

2.1.3 The DRYSTIK User Interface

The DRYSTIK uses a water-resistant membrane switch interface, which contains a two-row LCD screen and three touch-sensitive buttons. The three buttons are labeled with [↑], [↓], and [Enter] icons, respectively. The [↑] and [↓] buttons are used to cycle up and down through lists of options, as shown in Figure 6, and to increment and decrement numerical values, as shown in Figure 7. The [Enter] button is used to choose the currently highlighted menu option, or to confirm the currently specified numerical value.

Figure 6 The DRYSTIK menu is navigated using the [↑], [↓], and [Enter] buttons

Menu items are listed vertically, with a small horizontal arrow highlighting the currently selected option. Since the LCD screen only contains two rows of text, it is sometimes necessary to press $[\downarrow]$ several times before the desired menu command scrolls into view.

When the DRYSTIK is powered on, a main menu screen appears, offering the following options:

Manual Mode: Used to specify the desired Period, Duty Cycle, and Solenoid values. After these values have been entered, the DRYSTIK becomes active, with the pump cycling on and off repeatedly in accordance with the chosen Period and Duty Cycle.

Load Profile: Used to select a preset DRYSTIK configuration from a list of several profiles. Each profile contains a particular Period/Duty Cycle/ Solenoid configuration, plus more. DRYSTIK profiles are discussed in further detail in Section 2.1.4, below.

ADS Info: Used to display the DRYSTIK's model number, serial number, and firmware version. The device's firmware can be updated to the latest version using the CAPTURE software for Windows and macOS.

Figure 7 The DRYSTIK duty cycle configuration screen. Values are adjusted using [†] and [1].

While the DRYSTIK is running, the LCD screen displays the name of the profile currently in use. (If no profile is in use it displays "Manual Mode"). An on-screen timer counts down the number of minutes and seconds remaining before the current cycle reaches its end, at which point it repeats itself. If the DRYSTIK's optional solenoid is On, an [S] will appear on the second row of the DRYSTIK's LCD display. (See Section 2.1.6 for additional information on the Solenoid feature.) An LED indicating whether the pump is currently active is centered above the display.

When the DRYSTIK is running, pressing any button brings up a menu consisting of the following options:

[Back]: Cancels out of the menu and maintains DRYSTIK activity.

Pause/Resume: Pauses or resumes the DRYSTIK operation, and returns to the status display. When the DRYSTIK is paused, any pump activity is suspended.

Stop/Exit: Stops the DRYSTIK operation, disabling any pump activity, and returns to the main menu.

Save to Profile: Saves the current DRYSTIK configuration to a User Profile so that the current settings can be restored at a future date. DRYSTIK profiles are discussed in further detail in Section 2.1.4, below.

Change Settings: Adjust the DRYSTIK's current Period, Duty Cycle, or Solenoid setting.

2.1.4 DRYSTIK Profiles

The DRYSTIK allows configurations to be saved for later use, in the form of DRYSTIK Profiles. Selecting a profile automatically sets multiple device properties, including the Period, Duty Cycle, and more. The core components of a DRYSTIK profile are as follows:

Property	Description		
Period	Time from 0 to 99 Minutes		
Duty Cycle	Percentage from 0 to 100%		
Solenoid	Can be On or Off (Solenoid accessory is optional)		
Next Profile	Profile to switch to after a certain amount of time. Configurable using CAPTURE software.		
Delay Before Next Profile	Time from 0 to 99 Minutes. Configurable using CAPTURE software.		

The DRYSIK contains several built-in profiles, designed for particular types of RAD7 experiments. For example, a profile titled 'Soil Gas Rn 80cm' uses a period of 21 minutes and a duty cycle of 10%, and does not enable the solenoid. These particular values are suited for use with a DURRIDGE Soil Gas Probe, inserted to a depth of 80cm.

In addition to providing several built-in profiles, the DRYSTIK can maintain a set of user-created profiles. To establish a user profile and save it for future use, set the DRYSTIK to run in Manual Mode, entering the desired Period, Duty Cycle, and Solenoid settings. Once these settings have been accepted and the DRYSTIK is active, press any button to bring up the menu, and choose the Save to Profile option. Then select the user profile slot to which the current settings should be recorded. User profiles can also be created using Durridge's CAPTURE software. In addition, CAPTURE can be used to configure profile properties that cannot be controlled using the DRYSTIK's physical menu alone. For more information see section 2.1.7, on the next page.

2.1.5 Built-In Profiles Table

The DRYSTIK's built-in Profiles are listed in the following table. Each Profile has a different combination of Period and Duty Cycle values, resulting in differing Pump On Time and Pump Off Time values. (Note that the *Pump On Time* and *Pump Off Time* values listed below are determined automatically based on the specified Period and Duty Cycle.)

Profile Name	Period	Duty Cycle	Pump On Time	Pump Off Time	Solenoid	Notes
100% Duty Cycle	100 min.	100%	100 min.	0 min.	-	Pump remains On continuously
Radon in Air 1	60 min.	100%	60 min.	0 min.	-	Pump remains On continuously; Switches to Radon in Air 2 Profile after 60 minutes
Radon in Air 2	5 min.	20%	1 min.	4 min.	-	Pump is On for 1 minute out of every 5
Thoron in Air	100 min.	100%	100 min.	0 min.	Enabled	Pump remains On continuously
Soil Gas Rn 60cm	21 min.	5%	20 min.	1 min	-	Pump is On only 5% of the time
Soil Gas Rn 80cm	21 min.	10%	19 min.	2 min.	-	Pump is On only 10% of the time
Soil Gas Thoron	100 min.	100%	100 min.	0 min.	Enabled	Pump remains On continuously

2.1.6 Solenoid

DRYSTIK models ADS-3 and ADS-3R may be equipped with an optional solenoid device. When this solenoid is turned on, it pulls a High Airflow stream into a path that is otherwise occupied by Low Flow or Adjustable Flow air. This functionality is useful for interrupting the DRYSTIK's standard operation at regular intervals, so that a RAD7 can sample air containing short-lived thoron during a test that otherwise involves a lower air flow rate.

The solenoid may be turned On or Off as desired using the DRYSTIK's menu interface. In addition, DRYSTIK profiles can be configured to change the solenoid state, allowing for real time changes to the air path. This is discussed further below.

2.1.7 CAPTURE Software

Durridge's CAPTURE software for Windows and macOS can be used to monitor DRYSTIK activity, as well as to configure settings and update the device firmware. When the DRYSTIK is connected to the computer via USB, CAPTURE displays the device's current status, and provides controls for starting and stopping the device, and for modifying DRYSTIK profiles.

Certain profile properties may only be specified in CAPTURE. These include the Next Profile and Delay Before Next Profile properties, which once configured will allow a profile to run for a specified amount of time before another is automatically triggered. The second profile may in turn trigger yet another profile after a specified delay, or it may be left to run continually. By setting profiles with differing solenoid states to trigger one another at regular intervals, the DRYSTIK can change airflow rates to coincide with particular cycles of a RAD7 test.

Complete instructions on CAPTURE's DRYSTIK functionality are provided in the CAPTURE user's manual, which is accessible from within the application, and from the Durridge website, at durridge.com/software/capture/. The necessary software drivers for communication between the DRYSTIK and computer are typically preinstalled on Windows computers, but they are also available at the Durridge website, at durridge.com/drivers/.

2.2 Monitoring Radon in Air

To configure the DRYSTIK for monitoring radon in air, tubing from the sampling point is connected to the pump input. The pump output is connected to the Nafion tube input with a small tubing bridge. The output may be taken from the low-flow outlet, which gives a nominal flow rate of 0.16 L/min. For fastest reduction, and lowest level, of humidity in the RAD7, a Laboratory Drying Unit with new or regenerated desiccant may be placed between the Nafion tube outlet and the RAD7 inlet. The outlet of the RAD7 is fed to the purge inlet of the DRYSTIK to provide a counterflow purge of the sheath around the membrane tubing. The purge outlet may be left with nothing connected, or can be connected to downstream instruments.

Before starting any measurement with the RAD7 it should first be purged for five minutes. This can be done by connecting the RAD7 to the high-flow output of the DRYSTIK and running it for five minutes with the RAD7 switched off, or by disconnecting the DRYSTIK and letting the RAD7 do its own purge (TEST, PURGE [ENTER]), to remove residual radon from any previous measurement. The RAD7's purge can be stopped by pushing the menu button. The RAD7 should then be set to a preset protocol, such as 1-day (for 48 half-hour readings), or weeks (for indefinite monitoring, with two-hour cycles). After the protocol has been set, the RAD7's internal pump should be turned off (SETUP, PUMP, OFF [ENTER]). (It is important that the protocol be set FIRST.) The DRYSTIK can be turned on, with the duty cycle set to 100% and the DCC Output / Internal Pump switch set to Internal Pump. The RAD7 measurement can be started at any time (TEST, START [ENTER]). After an hour or so, the duty cycle of the DRYSTIK can be reduced to, say, 20%. This improves the efficiency and reduces wear and tear on the pump.

DURRIDGE's CAPTURE software, which is available for Windows and macOS, may always be used to download data from the RAD7. If no desiccant is used, particularly in hot and humid conditions, there may still be a measurable correction to be applied for humidity in the RAD7. CAPTURE provides this correction to readings automatically provided the "correct for humidity" checkbox is checked.

Figure 8 Basic setup for monitoring radon in air

2.3 Monitoring Thoron in Air

The significant difference between measuring radon and measuring thoron is the half life of thoron (56 seconds). Because this is so short, the delay between the air being sampled at the sampling point and being measured in the instrument is a cause of loss of sample by radioactive decay during sample acquisition. Thus it improves thoron sensitivity to minimize the volume of the sample acquisition path and use a high flow velocity. To that end, the "high flow" output is chosen and either no desiccant is put in the path to the RAD7 (Figure 9) or a Small Drying Tube is put there (Figure 10). The DRYSTIK duty cycle should be set to 100% using the 'Thoron in Air' profile. Set the RAD7 protocol to 'Thoron' (SETUP, PROTOCOL, THORON [ENTER]) and then change the cycle length to your choice and turn off the RAD7 pump (SETUP, PUMP, OFF [ENTER]). It is important the RAD7 protocol be set to 'Thoron' BEFORE the RAD7 pump is set to OFF. For long term monitoring we would recommend longer cycle times than the default 5 minutes; 15 or 30 minutes would be good. If a printer is in position, turn on the RAD7 and let it print out the header. Check the setup review to be sure all settings are what you expect.

Figure 9 Basic setup for monitoring thoron in air

Figure 10 Alternative setup for monitoring thoron in air

2.4 High Humidity Conditions

If condensation occurs in the tube bridge, between the pump and the Nafion tube input, water will make contact with the Nafion. This should be avoided if possible. The most efficient way to deal with it is with a Cool Trap. DURRIDGE offers two sizes of Cool Trap, one that would fit in a mug and one that would fit in a bucket. The bucket size is more efficient, but has more volume . Either one can be placed in a container with ice water or other coolant, or mounted in the door (to avoid refrigerant tubes) of a refrigerator.

The cool trap is intended to reduce the dew point of the compressed air down towards the temperature of the cool trap, preferably close to zero degrees celsius. Condensate is expelled through the drain. The drain needle valve should be adjusted so that a bubble appears occasionally. If the drain blows a bubble occasionally, we know that water is not accumulating in the reservoir. If the compressed air leaving the cool trap has a dew point below ambient temperature we can be confident that condensation will not occur inside the teflon membrane tube.

If no cool trap is available, slowing down the average flow rate reduces the rate of condensation and helps the Nafion tube to deal with the condensed water. Use the low-flow output of the DRYSTIK and set the duty cycle to 20% or less. The lower the duty cycle, the lower the average flow rate, the easier the Nafion tube will deal with condensate and the less wear and tear on the pump.

Please note, however, that very low flow rates may influence the performance of the RAD7. With a 10% duty cycle and a 0.16 L/min flow rate when the pump is ON, the average flow rate will be 0.016 L/min. The volume of the RAD7 and inlet tubing will be around 1L, so that without any desiccant it will take about 1/0.016 = 1 hour for 1L of sample air to flow out of the DRYSTIK. That will require 1% to be added to the RAD7 reading to correct for the decay of the radon in the sample during sample acquisition. With a Laboratory Drying Unit in the sample acquisition path the correction should be nearly doubled. Please note, also, that the response time of the system with such a flow rate cannot be less than 70 minutes even if the RAD7 is put into SNIFF mode. For normal, long-term measurements, with the RAD7 in NORMAL mode after the first three hours, neither the 1% or 2% correction nor the one- or two-hour response time are of any concern.

For continuous soil gas measurements, see below, the very low flow rate is a distinct advantage.

Figure 11 DRYSTIK Configuration with Cool Trap

2.5 Monitoring Radon in Water

The DRYSTIK can be used to aid operations using the RAD AQUA and RAD H_2O accessories, significantly extending desiccant life and in certain cases eliminating the need for desiccant altogether. Basic information on using the DRYSTIK with each of these accessories are provided below, but it will be necessary to refer to the manuals specific to each accessory for complete instructions.

2.5.1 RAD AQUA

When using a passive or active DRYSTIK with the RAD AQUA, the DRYSTIK should be connected to the RAD AQUA apparatus between the RAD AQUA

exchanger and the Laboratory Drying Unit, as shown in Figure 12, below. If there is any chance of liquid water entering the DRYSTIK, precautions should be taken to prevent it from happening. The airtight DURRIDGE Water Switch is a good solution. It should be inserted in the air sample path upstream of the DRYSTIK. The Water Switch is connected to a 12V supply, and the 12V output of the Water Switch is connected to the DRYSTIK 12V power inlet. When water enters the Water Switch, it raises a float that interrupts the 12V supply, thus stopping the pump in the DRYSTIK. More information on using the DRYSTIK with the RAD AQUA is available in the RAD AQUA manual, Chapter 5: DRYSTIK.

Figure 12 DRYSTIK Configuration with RAD AQUA

2.5.2 RAD H₂O

Using the DRYSTIK in a RAD H_2O experiment, it is possible to aerate the water completely and keep the RAD7 dry for the duration of the measurement. This section provides details on the necessary procedure.

2.5.2a System Setup

As shown in Figure 13, a Small Drying Tube is connected to both the low flow and the needle-valvecontrolled outputs of the DRYSTIK, with a clip on the tubing from the controlled output. Make sure that the correct aerator cap is chosen for the vial size being used.

Several variations of the experimental setup are supported. The setup shown here works with the 40ml and 250ml bottles included with the RAD H_2O . Larger bottles require the Big Bottle System and involve a larger Laboratory Drying Unit and a different type of aerator bottle cap, which affects the air volume of the apparatus. Big Bottle System configurations therefore require adjustments in the CAPTURE software for a proper data analysis.

2.5.2b Needle Valve Adjustment

The DRYSTIK's needle valve should be adjusted such that the sample can be aerated without any water entering sensitive equipment and damaging it. To determine the proper needle valve setting, fill an unused vial with water similar to the sample. (If the sample is plain tap water then use plain tap water. If the sample is contaminated with foaming agents then use water similarly contaminated.) Attach the filled vial to the aerator cap. Check that the glass frit nearly (but not quite) touches the bottom of the vial. With the clip open, close the needle valve and run the DRYSTIK with 100% duty cycle. There will be some bubbles in the vial. Open the needle valve slowly until bubbles start to rise up in the tube above the aerator cap. Adjust the needle valve so that there is no chance that bubbles will climb all the the way up and enter the DRYSTIK. Finally, turn off the DRYSTIK and remove the vial.

2.5.2c RAD7 Setup

If external power is available, plug in the RAD7. Turn on the RAD7 and press [MENU]. Change the protocol to the required RAD H₂O protocol (SETUP, PROTOCOL, WAT250 (or WAT-40) [ENTER]). Turn

Figure 13 DRYSTIK Configuration with RAD H₂O

off the RAD7 pump (SETUP, PUMP, OFF [ENTER]). Then turn off the RAD7 and turn on the printer. Turn the RAD7 back on and let it print out the measurement header. Make sure the pump is listed as Off.

2.5.2d DRYSTIK Setup

The DRYSTIK is going to run with 100% duty cycle for 5 minutes (with clean water) or longer, perhaps 10 minutes or more, if the water is foamy and the controlled flow rate is reduced to prevent bubbles reaching the DRYSTIK. It can then switch to, say, 30% duty cycle with the clip closed, to reduce the average flow rate to around 0.05 L/min, just to keep the RAD7 dry. The changes can be made manually, or a DRYSTIK profile can be set up using CAPTURE, to make the changes automatically after a certain amount of time has passed. An optional solenoid valve can control the DRYSTIK, making the whole process completely automatic, under the control of the DRYSTIK micro-controller.

If a manual procedure is used, the aeration process will proceed with a 100% duty cycle and the clip open. When the aeration is complete, change the duty cycle to 30% and close the clip.

If the procedure is semi-automatic, load two DRYSTIK profiles using CAPTURE, and have the first (100% duty cycle) automatically switch to a second (30% duty cycle) after the required aeration time.

If the procedure is fully automatic, close the clip at the same time the switch is made to the second profile.

2.5.2e Measurement

Start the DRYSTIK operation, above. Less than five minutes before the end of the aeration phase start the RAD7 run (TEST, START [ENTER]). The RAD7, without the pump running, will show two 5-minute cycles with no data and then four reading cycles. It then finishes the run and prints the summary.

2.5.2f Preparing for the next measurement

Remove the water sample from the aerator, but leave everything else in place. Open the clip and run the DRYSTIK with the duty cycle at 100% for 3 - 5 minutes. This will purge the system of residual radon. Stop the DRYSTIK pump. Then go to 2.5.2e, above.

2.5.2g Data analysis

The summary print out shows the average of the four readings and their standard deviation. The one-sigma uncertainty of the average is the standard deviation of the readings divided by SQR(number of readings) or divided by two. The two sigma uncertainty of the average is therefore equal to the standard deviation of the readings when there are four readings. The RAD7 printout therefore gives you the radon concentration in the water and the two-sigma uncertainty of that measurement. You can get the same information in graph format by using CAPTURE to download the data and graph it.

Additional details are provided in the Big Bottle RAD H₂O manual, Section 1.4.5: Running the test with the DRYSTIK.

2.6 Soil Gas Monitoring

Figure 14 DRYSTIK Configuration for monitoring radon in soil gas

2.6.1 Monitoring Radon in Soil Gas

The Duty Cycle Controller built into the DRYSTIK is ideally suited for the long-term monitoring of radon concentrations in soil gas using a RAD7 and soil gas probe. The Duty Cycle Controller enables the average flow rate to be reduced to prevent fresh air from diffusing down through the soil to the sampling point. With the Duty Cycle set appropriately, continuous monitoring of soil gas from one sample point may be performed indefinitely. The maximum permissible flow rate depends on the porosity of the soil and the depth of the probe.

The half life of radon is 3.8 days. The air sample may be considered to be drawn from a sphere centered on the sampling point. (See figures 15, 16, and 17.) If that sphere takes two weeks to grow before it just touches the ground surface, then it takes two weeks for air to filter down to the sampling point. We may then accept that the air at the sampling point continues to stay very close to equilibrium with the radium in the soil.

For a probe depth of D cm, the maximum sphere volume will be $4\pi D^3/3,000$ litres. If the porosity of the soil is 50%, the corresponding air volume will be $2\pi D^3/3,000$. Two weeks is about 20,000 minutes. So the average flow rate must be less than $2\pi D^3/60,000,000$ litre/min. If we allow that 2π is close to 6, the rate must be less than $D^3 * 10^{-7}$ litre/min where D is the probe depth in cm.

Maximum flow rate, F, is roughly given by:

 $F = D^3 / 10^7 \text{ litre/min}$

where D is the probe depth in cm.

If, for example, D is about two feet, or 61cm, the maximum flow rate to meet this criterion for continuous sampling will be 0.022 L/min. Uncertainties in the porosity and other assumptions may make it advisable, for this depth, to keep the flow rate less than 0.01 L/min.

Typically, the ON flow rate of the DRYSTIK is set to about 0.16 L/min, which is comparable to the average flow rate of a RAD7 whose pump, operating at 1 L/ min, runs for one minute in every five. On the DRYSTIK simply select the desired 'Soil Gas' profile. This produces an average flow rate of 0.01 L/min from the soil gas probe.

With a probe depth of 61cm and a porosity of 50%, this setting will enable continuous, indefinite sampling of the soil gas for radon concentration without significant dilution of the sample by fresh air diffusing down from the surface. Increasing the depth by 26%, to 77cm, will allow double the flow rate, assuming uniform soil porosity down to 2m or so.

2.6.2 Minimum Flow Rates

Radon has a half life of 3.8 days. If the air sample takes more than an hour or two to reach the measurement chamber, there may be enough sample loss to call for a sample decay correction. With a Laboratory Drying Unit in the air path, you can assume a sample path volume of about 2 litres, plus more if the probe is so far from the RAD7 that the volume of the tubing becomes significant. If the probe is close to the RAD7 (within about 10m) and the maximum acceptable delay before corrections have to be applied is 2 hours, then the minimum permissible flow rate will be 2L / 120min, or 0.017 L/ min. Flow rates lower than this will require a correction factor for radon decay, as discussed below.

Figure 15 Soil gas is drawn upwards. The spherical region from which the gas is being pumped expands.

Figure 16

The sphere should not expand enough to touch the surface during the test.

Figure 17 Unwanted Result: Sphere radius exceeds probe depth. Fresh air diffusion occurs.

Figures 15-17 Underground Soil Gas Sphere

2.6.3 Correcting for Very Low Flow Rates

In the examples above, it may be seen that for a probe depth of 61cm, to avoid dilution of the air sample after a week or two of sampling, a flow rate of no more than 0.01L/min is desired, but with this flow rate the sample will lose some radon by radioactive decay during sample acquisition.

One solution to this problem would be to increase the sampling depth to 2ft 6inches (77cm) or more and draw at an average flow rate of 0.02 L/min. This may be obtained with a duty cycle of 10% (for example, an ON time of 3 sec. and an OFF time of 30 sec.) with a flow rate of 0.2 L/min.

Another solution would be to leave the sampling point at 2ft (61cm), draw at an average flow rate of 0.02 L/min, taking note of any long-term change in the average after one week of sampling, and then apply a correction for fresh air infiltration to readings after three or four weeks of sampling.

A third solution would be to keep the probe at 2ft (61cm) and keep the flow rate at 0.01 L/min. Assuming a sample volume of 2L, this will cause an acquisition time of around 2 / 0.01 min = 200minutes. In 200 minutes, about 2.5% of the radon will have been lost by radioactive decay. A factor of 1.025 may therefore be applied to the reading to correct for the loss.

2.6.4 Measuring Thoron in Soil Gas

Thoron has a half life of less than a minute. Using the DRYSTIK with a typical configuration will inevitably cause sample acquisition delays far in excess of one minute. Therefore changes are needed for the measurement of thoron.

To measure thoron in soil gas, the DRYSTIK's needle valve should be bypassed and the pump should be set to run continuously. The flow rate will then be close to 1 L/min if the soil is porous.

At a flow rate of 1 L/min, with a Laboratory Drying Unit in the sample path, the sample delay increase over standard thoron protocol will be about 1 minute. Therefore the thoron readings should be multiplied by a factor of 2. If the flow rate is reduced and/or the sample volume is larger, a greater correction factor will be needed.

3 DRYSTIK Technology

3.1 Pump Airflow

The DRYSTIK's Sample In and Pump Out ports are bridged internally with tubing connecting to an air filter and pump, as shown in Figure 18. When operating the DRYSTIK in a dusty environment, an additional air filter should be added to the tubing bridge on the outside of the instrument. See Section 4.2 for details.

Figure 18 DRYSTIK Pump Airflow

3.2 Nafion Tubing Airflow

Figure 19 illustrates the DRYSTIK's second air path, which contains Nafion tubing and the ports used to separate moisture out of the air sample. Once the sample has been dried, it exits the system through one of three outputs: a High Airflow port, a Low Airflow port, and an adjustable Needle Value port.

Figure 19 DRYSTIK Pump Airflow

3.3 DRYSTIK Circuitry

Figure 20 illustrates the basic connections between the switches and ports on the rear panel of the DRYSTIK model ADS-3. (Model ADS-3R contains the same elements, but on the top faceplate.) When turned on, the Power Switch enables all system functions. The Pump/Output toggle switch controls whether the Duty Cycle Output feeds power to the internal pump or to the Duty Cycle Controller output port. The latter option makes it possible to use the Duty Cycle Controller to control a different instrument, such as an external pump.

Figure 20 DRYSTIK Model ADS-3 Circuitry

4 Troubleshooting

4.1 Water Enters The DRYSTIK

If water enters the DRYSTIK, the following actions should be taken to ensure that the instrument does not sustain permanent damage.

1. Connect a tube to the high-flow output of the DRYSTIK. Start the pump and make sure that a) air is coming out of the tube and b) there is no liquid coming out. If you see liquid coming out, keep pumping until you see no liquid. To speed the drying, you can connect the sample output to the purge input, preferably, but not necessarily, through a Laboratory Drying Unit containing good desiccant.

2. Once you are sure that the DRYSTIK will not spit out any liquid, connect the high-flow output of the DRYSTIK directly to the RAD7 inlet filter, connect the RAD7 outlet to a drying unit with good desiccant, and connect the other end of the drying unit to the purge input on the DRYSTIK. There will be no desiccant in the sample path leading to the RAD7, but the purge flow will be dry.

3. Turn on the RAD7, but do not start any test. Make sure the pump is not running and go to the third status window ([Menu], [Enter], [Enter], Rt. Arrow, Rt. Arrow), where the RH is given in the top righthand corner.

4. Set the DRYSTIK duty cycle to 100%. Set the Period to 1 minute, and then start the DRYSTIK. Check that there is flow out of the purge outlet. The flow rate should be around 1.5 L/min.

5. When the RH in the RAD7 drops to below 50%, change the DRYSTIK duty cycle to 50%.

6. When the RH in the RAD7 drops below 15%, change the tubing connection to the DRYSTIK low flow output.

7. Eventually, and it may take a day or two, the RAD7 RH should drop down to below 5% if the DRYSTIK is working well.

4.2 Dust Enters The DRYSTIK

It is important to prevent dust from entering the DRYSTIK and becoming lodged in the instrument's Nafion tubing. If there is any dust in the air entering the DRYSTIK, a 5-micron dust filter should be included in the air path, preferably in the bridge between the pump output and the Nafion tubing input. An additional dust filter resides inside the DRYSTIK enclosure, upstream of the pump, but it is not designed to handle extremely small particles. This internal filter can be replaced by DURRIDGE technicians as needed.

If dust lands inside the Nafion tubing it may affect results by a) raising the RAD7 background due to trace amounts of radium in the dust, b) contaminating the Nafion so that it loses its efficiency, and c) reducing the flow rate by partially blocking the capillary tubing.

In these cases it may be possible to address the problem by removing the Nafion tubing and carefully washing it, but it is more typically necessary for the DRYSTIK to be returned for service so that the Nafion tubing can be replaced by DURRIDGE personnel.

4.3 CAPTURE Software Fails to Detect The DRYSTIK

The CAPTURE User's Manual contains troubleshooting instructions that can help to resolve DRYSTIK connection failures. The manual can be accessed from the CAPTURE page on the Durridge website (durridge.com/software/capture/), and from within the CAPTURE application itself, using the Help menu in the menubar. Please refer to the "Device Detection Failure" section of the Troubleshooting chapter in the CAPTURE manual.

Appendix 1: DRYSTIK Model Comparison

The following table shows the differences between DRYSTIK models ADS-3 and ADS-3R.

	DRYSTIK Model ADS-3	DRYSTIK Model ADS-3R			
Appearance					
Enclosure Type	ABS Plastic Case, Beige	Rugged Pelican Case, Black			
Protective Lid	Not Available	Included			
Outer Dimensions	11.5" x 7.75" x 3.25" (29 cm x 20 cm x 8 cm)	13.75" x 11.5" x 5.75" (35 cm x 29 cm x 15 cm)			
Weight	3.40 lbs (1.54 kg)	7.20 lbs (3.27 kg)			
Nafion Tubing Length	144 inches				
Pump Specifications	Brushless Pump (12V, 6W, 0.5A). Lifespan: ~10,000 hours of continuous use.				
Airflow Rates (Unrestricted)	High (1.5 L/Min), Low (0.16 L/Min), Adjustable (up to approx. 2 L/N				
Built-in Duty Cycle Controller	Included				
Savable DCC Configurations	Supported				
Computer Connectivity	DRYSTIK can be connected to computer via USB and monitored and c with DURRIDGE CAPTURE Software				
LCD Display Location	Front	Тор			
Low Vibration Pump Mount	Included				
Solenoid Support	Supported (Solenoid is optional)				
Faceplate Controls	Front Accessible	Top Accessible			
Power In	12V DC in (1.25A)				
Power Out	12V out (1.0A)				
Internal Air Vol: Pump Path	34 mL				
Internal Air Vol: Sample Path	47 mL				
Internal Air Vol: Purge Path	52 m				
Internal Air Volume (Total)	133 mL				

Appendix 2: Glossary of Terms

The following DRYSTIK-related terms appear throughout this manual, and it is important for DRYSTIK users to understand their meanings:

Term	Definition	See Section(s)
ADS-3 vs ADS-3R	The DRYSTIK model ADS-3R is a ruggedized version of the model ADS-3. The ADS-3R is suitable for outdoor use, and its case can be closed when not in use.	2.1.1, Appendix 1
CAPTURE Software	DURRIDGE's software for Windows and macOS, used to remotely control a DRYSTIK, configure DRYSTIK Profiles, and install DRYSTIK firmware updates.	2.1.4, 2.1.7, 4.3
Duty Cycle	The portion of the Period duration during which the DRYSTIK pump is On. Typically expressed as a percentage from 0-100%. This can be configured manually or saved in a Profile.	2.1.3 - 2.1.5
Duty Cycle Controller	The DRYSTIK's built-in circuitry for controlling the operation of the instrument's pump.	2.1.1, 2.1.2, 2.6.1
High/Low/Adjustable Airflow	The DRYSTIK can pump the sample air into the RAD7 at different flow rates, including High (1.5 L/Min), Low (0.16 L/Min), and Adjustable (up to approximately 2 L/Min), unrestricted. Each flow rate is accessible through a different tubing port.	2.1.1, 3.1, 3.2
Manual Mode	The pump's Period and Duty cycle are specified manually, as opposed to being determined by a preset Profile.	2.1.3, 2.1.4
Nafion Tubing	The special tubing inside the DRYSTIK enclosure that removes moisture from the air sample without removing the radon. This tubing is available in three lengths, for varying levels of drying performance.	Introduction, 3.2, 4.2
Period	The duration before the pump's On/Off pattern repeats. Typically expressed in minutes. This can be configured manually or saved in a Profile.	2.1.3 - 2.1.5
Profile	A particular combination of DRYSTIK settings including a Pump Period and Duty Cycle, and other parameters. Custom Profiles can be configured and saved for future reuse.	2.1.3, 2.1.4, 2.1.7, 2.2.5d
Purge Air	The air flowing out of the RAD7 and back through the DRYSTIK, which collects the moisture removed from the air being dried and drawn in to the RAD7.	Introduction, 2.1.1, 2.2
Solenoid	Optional feature which pulls a High Airflow stream into an air path that is otherwise occupied by a Low Airflow or Adjustable Flow stream. The Solenoid behavior is determined by the DRYSTIK's Profile.	2.1.3, 2.1.4, 2.1.6

DURRIDGE Company Inc.

900 Technology Park Drive Billerica, MA 01821

 Telephone:
 (+1) 978-667-9556

 Fax:
 (+1) 978-667-9557

 Web:
 www.durridge.com

 Email:
 service@durridge.com

© Copyright 2021 DURRIDGE Company Inc. All rights reserved.

DURRIDGE, the DURRIDGE logo, and the Works with the DURRIDGE logo are trademarks of DURRIDGE Company Inc., registered in the U.S.

Note: DURRIDGE frequently updates its product manuals with new information. The latest version of this manual can be downloaded in PDF format from the following location: www.durridge.com/support/product-manuals/

Revision 2021-07-09