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What Is NAPL?
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• NAPL = Non-Aqueous-Phase 
Liquids

• Environmental contaminants.
• Immiscible in water.
• Examples: diesel, kerosene, 

gasoline, chlorinated solvents, 
mineral oils.

Image from Flores et al. 2011 [Flores2011]

Two types:

1. LNAPL (lighter than water), which occupies the 
vadose zone, but may penetrate the saturated 
zone.

2. DNAPL (denser than water, > 1 g/cm3), which sinks 
down to the bottom of the saturated zone.



Goals & Applications of NAPL 
Contamination Measurements

• Map the spatial extent and degree of recent 
or historical NAPL contamination, for the 
purposes of remediation planning and risk 
assessment.

• Examples of sites: military, industrial, 
airports, petrol stations, etc. (in-use or 
abandoned).
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Traditional Solutions & Their Drawbacks
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Technique Drawback

Direct detection, either directly of NAPL 
(‘drive-point profiling’ or ‘core 
sampling’), or organic carbon vapours
(e.g. BTEX).

Expensive, as many samples needed to 
cover ‘patchy’ spills. Samples must be 
taken to a lab for off-site analysis.

Detection of organic vapours
biologically derived from NAPL.

Take time to accumulate and are 
therefore not useful for new spills.

Injection of artificial Tracers: SF6. Perturbation of the system you are 
trying to measure. Possible legal 
hurdles. Costly.



Alternative: Radon

• Colourless, odourless 
naturally occurring radioactive 
gas. Produced from the decay 
of radium-226 (ubiquitous in 
the earth’s crust).

• Chemically inert (noble gas).
• Short (3.8 day) half life: ideal 

tracer of short-term 
environmental processes.

• Non-destructive and non-
invasive.

• Strong affinity for NAPL.
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Image from Schubert 2002 [Schubert2002]



Two Techniques

• 1) Map and measure NAPL contamination in 
the vadose zone by measuring radon deficit in 
soil gas using a continuous radon monitor + 
soil gas probe.

• 2) Map and measure NAPL contamination in 
the saturated zone (aquifer) by measuring 
radon deficit in water samples using a 
continuous radon monitor + air-water radon 
exchanger.
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1) Soil Gas Measurements (Vadose Zone)

• Continuous radon 
monitor (e.g. 
DURRIDGE RAD7) + 
soil gas probe.

• Want high sensitivity (for 
high precision), coupled 
with accurate results 
(background 
discrimination, 
radon/thoron 
discrimination, etc.)

• Make precise (~ +/-
10%) readings every 
half-hour.
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Mapping NAPL in the soil

• White dashed lines 
are known extent of 
NAPL (diesel) 
contamination from 
soil core sampling.

• Black dots are soil 
sampling points 
(n=209).

• Greyscale is radon 
concentration in soil 
gas at 70 cm depth.

• Strong negative 
correlation.

10Image from Schubert 2002 [Schubert2002]



Quantifying Soil NAPL Contamination

• Can write equations 
like this one that relate 
the measured radon 
concentration in soil 
gas to the amount of 
NAPL contamination.

• KNAPL/SG and Kwater/SG(radon partition 
coefficients between 
NAPL and soil gas or 
water) are important 
parameters to know. 
Theoretical values 
agree well with the 
results of experiments 
done in the lab.

11

Source: De Simone et al. (2017)



Pitfalls & Limitations

• Mineralogical heterogeneity of soil.
• Permeability heterogeneity.
• Meteorological interference – sink probes deeper than 70 cm to avoid 

this.
• Rain can affect radon concentrations below 70 cm, but its effect is 

understood and can be accounted for.
• Since the coefficient of partitioning between the soil gas and the NAPL 

is similar for a wide range of NAPLs, the technique can’t tell you 
precisely what is there (a few soil samples still needed for that).

• Limited to NAPL contamination within the diffusion length of radon in 
soil (~ 2 m in dry, sandy soil). Radon diffusion length in water is only a 
few cm, so this technique cannot detect NAPL below the water table.
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From Schubert et al. (2001)



Heterogeneity of Minerology / 
Permeability
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Source: De Simone et al. (2017)



Two Techniques

• 1) Map and measure NAPL contamination in 
the vadose zone by measuring radon deficit in 
soil gas using a continuous radon monitor + 
soil gas probe.

• 2) Map and measure NAPL contamination in 
the saturated zone (aquifer) by measuring 
radon deficit in water samples using a 
continuous radon monitor + air-water radon 
exchanger.
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2) Aquifer Water Sample Measurements

• Continuous radon monitor + 
water-air radon exchanger 
(e.g. DURRIDGE RAD7 + 
RAD H2O).

• Collect water samples from 
sampling wells.

• Bubble air in a closed loop 
through water sample and 
measure the radon in the air 
loop (RAD H2O accessory, 
right).

• Measure in the field or take 
the samples away for later 
analysis.

• Precise and accurate results 
in 30 minutes.
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NAPL Contamination of Aquifers
• Example: measure radon in 

water from sampling wells at a 
contaminated disused petrol 
station.

• Top - Dashed line and grey 
shaded area: extent of NAPL 
spill determined by traditional 
core sampling technique.

• Bottom - Contours represent 
radon concentration in 
groundwater as reconstructed 
from measurements at a set of 
sampling wells P[X].
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From Schubert (2007)



Modeling the Effect of NAPL on radon in 
Aquifers
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From Sempirini (2000)

• Similar model parameters as the 
equations we saw for radon in soil 
gas.

• However, now advective transport of 
radon must be considered due to 
groundwater flow.

• Right: 1D models e.g. by Sempirini
et al. show good agreement with 
data.

• Radon drops by a factor of ~ 3 at 
the source zone, then recovers to 
equilibrium value after ~ 2 metres (in 
direction downgradient of 
groundwater flow).

• Again, estimate or measure all other 
model parameters, then adjust the 
level of NAPL contamination until the 
model fits the data.

• Equation above is for steady state. 
Things get a bit trickier when 
groundwater flow is considered.

• CW(NAPL) = radon concentration in groundwater 
sample from contaminated zone.

• CW(background) = radon conc. in background 
groundwater sample.

• SNAPL = NAPL saturation in contaminated zone.
• KC = NAPL/water partition coefficient.



Pitfalls & Limitations
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• Mineralogical heterogeneity of aquifer.
• Permeability heterogeneity.
• Still need to drill sampling wells.
• Since the coefficient of partitioning between the water and the NAPL is 

similar for a wide range of NAPLs, the technique can’t tell you precisely 
what is there.

• Mixing of groundwater between contaminated and uncontaminated 
zones can lead to an underestimation of the contamination.



Summary

• Radon measurements are an alternative to direct core sampling for 
mapping and estimating the amount of NAPL contamination in soil 
and aquifers.

• Plenty of real-world examples in the scientific literature over the past 
two decades.

• Complicated by factors including heterogeneities in minerology and 
permeability.

• Cannot tell you the exact nature of the NAPL, because different NAPLs 
have similar radon affinities.

• Even if quantitative measurements are not possible, radon maps can 
precisely target remediation efforts to the most contaminated 
locations.

• Can be much faster, cheaper and more convenient than traditional 
methods.
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Thanks for your attention!


