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Radon Overview 

• Radioactive gas found in the 
environment. 

• Collects in dwellings and workplaces 
under certain conditions. 

• Inert, colorless, odorless – undetectable 
by the human body. 

• Radon and its decay products emit 
ionizing radiation when they decay. 

• 21,000 deaths per annum in the USA caused 
by radon-related lung cancers. 
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Overview of Continuous Radon 

Measurement Technologies 

4 types: 
 

1. Ionization Chambers 
 

2. Scintillation Counters (Lucas Cells) 
 

3. Pulse Ionization Chambers 
 

4. Electrostatic Precipitation Instruments 
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2 major drawbacks: 

• 1) Background from 210Po increases over the 
lifetime of the instrument. 

• 2) No thoron / radon discrimination. 

Pulse Ionization Chambers - Overview 

• Ionization electrons created as 
decay alphas are stopped in the 
air inside the chamber. These 
form negative ions with O2 
molecules, which then drift to 
the anode. 

• Signal is the primary alpha 
decay of radon + subsequent 
218Po decay. 

• Energy resolution of ~ 0.25 MeV 
achievable for ~ 5 MeV alpha 
decays. 

• Large volumes and high 
collection efficiencies are 
possible, leading to sensitivities 
as high as 50 cpm/kBq/m3. 6 



Example Pulse Ionization Chamber 

Energy Spectrum 
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• Changes in radon concentration 
are seen near-instantly in the 
purple peak. 

• Energy peaks from radon, thoron 
and 210Po background overlap in 
this peak. No clear energy 
separation. 

• Only partial separation of 218Po 
and 222Rn peaks. 

212 Bi   6.05 MeV 



Electrostatic Precipitation Instrument – 

RAD7 
• High-resolution alpha spectrometry 

of radon decay products to 
determine radon and thoron 
concentration and reject 
backgrounds. 

• Electrostatic collection of radon 
daughters on a silicon detector, 
followed by high-resolution alpha 
spectrometry. 

• Simultaneous, independent 
measurement of radon and thoron. 

• Normal (Sniff) Mode Sensitivity: 
13 (6.7) cpm/kBq/m3 

• Intrinsic Background: 
0.2 Bq/m3 for lifetime of the 
instrument. 

8 



RAD7 Measurement Technology 

Electrostatic precipitation with 

Alpha Spectrometry 

• Radon and thoron admitted, progeny 
blocked. 

• Radon decays to charged 218Po. 

• 218Po precipitated onto a silicon detector 
by electric field. 

• 218Po decays to 214Po, 50% chance to be 
measured (due to geometry). Full energy 
seen by silicon detector. 

• 214Po decays, 50% chance to be measured. 
Again, full energy seen. 

• Radon concentration calculated by: 
Sniff Mode: Rate of decay of 218Po in the A 
Window. 
Normal Mode: Rate of decay of 218Po + 
214Po in the A and C Windows 

RAD7 Measurement 
Chamber 
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RAD7 Alpha Energy Spectrum 

• Near-perfect background 
rejection, including long-lived 
210Po contamination (purple 
peak). 

• Near-perfect Radon/Thoron 
Discrimination (green/blue vs 
red/orange peaks). 10 
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Side-By-Side Spectrum Comparison 
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Example spectrum from a pulse ionisation type 
radon detector. Radon and thoron peaks 
overlap with each other, and with the  210 Po 
background peak. Low-energy shoulder from 
partially contained (mis-measured) events. 
Energy resolution of this model: 0.25 MeV. 
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Example RAD7 spectrum showing radon 
daughter and granddaughter peaks (218Po 
and 214Po), thoron daughter and 
granddaughter peaks (216Po and 212Po), plus 
rejected 210Po peak. All peaks show near-
perfect energy separation, allowing near-
perfect background rejection and 
simultaneous, independent measurement of 
radon and thoron. 

Electrostatic Precipitation 
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Prototype – Sensitivity Measurement 

• Constant radon 
concentration 
maintained in the radon 
reservoir tanks. 

• 4 x RAD7 reference 
standards give the ‘true’ 
radon concentration. 

• Simultaneous 
measurement with 
Prototype. 

• Expose to radon for 24 x 
2hrs. Discard first two 
data points to allow 
equilibration. 

• Output: raw 12-bit 
spectrum of counts 
(4096 x 2.5 keV energy 
bins). 

• Need to set the energy scale 
in order to calculate 
sensitivity… 
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Conversion factor = 401.96 +/− 0.63

Setting the Energy Scale 
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• Find maxima of four alpha decay energy peaks. 

• Plot the Analogue-to-Digital Converter (ADC) index against the known alpha decay 
energy. 

• Straight line fit forced through the origin yields an extremely good fit, 
demonstrating a linear energy response. 

• Resulting conversion factor: 402.0 +/- 0.6 ADC points per MeV. 



Energy Windows 

• Combine energy scale with RAD7 A, B, C, D window definitions (which we 
saw on slides 10 & 11) to yield energy windows for the prototype in ADC 
units: 
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Energy Window Species Lower Bound ADC index Upper bound ADC index 
A 218 Po 2248 2569 
B 216 Po 2570 2890 
C 214 Po 2891 3291 
D 212 Po 3292 3733  

• Sum counts in A window (Sniff mode) and A+C windows (Normal 
mode), and divide by run time and radon concentration to yield 
sensitivity... 



Prototype – Preliminary Results 

• Sniff (fast) mode sensitivity = 7.64 +/- 0.06 cpm/kBq/m3 

 
• Normal (slow) mode sensitivity = 15.39 +/- 0.04 cpm/kBq/m3 

 

• 15% higher than RAD7, which is the most sensitive 
electrostatic precipitation instrument on the market. 
 

• Improvement achieved with a measurement chamber half the 
physical size of the RAD7’s. 
 

• Lower than the leading pulse ionization chamber instrument, 
but with the benefit of radon/thoron discrimination and 210Po 
background rejection. 
 

• Work is ongoing to improve on this sensitivity with further 
optimization of the dome geometry. 
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Summary 

• Pulse ionization chamber radon detectors have a fast initial response and 
high sensitivity. 

• However, it is important to also consider two important drawbacks: 

1. 210Po background build-up. Every radon decay you measure with 
such an instrument adds to the background, eventually making low-
level measurements impossible. 

2. No real-time radon/thoron discrimination. 

 

• Both of these problems are solved by electrostatic precipitation 
instruments like the DURRIDGE RAD7, thanks to near-perfect 
separation of the various alpha decay energy peaks associated with 
the progeny of radon and thoron, and 210Pb. 

• DURRIDGE’s prototype instrument has superior sensitivity to the 
RAD7 (currently the most sensitive electrostatic precipitation device 
on the market), as well as a host of other improvements. 
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Thanks for listening! 


